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New similarity solutions for the modified Boussinesq equation 

Peter A Clarkson 
Department of Mathematics, University of Exeter, Exeter, EX4 4QE, UK 

Received 28 November 1988 

Abstract. In this paper we present some new similarity solutions of the modified Boussinesq 
(mBq) equation, which is a completely integrable soliton equation. These new similarity 
solutions include reductions to the second and fourth Painleve equations which are not 
obtainable using the standard Lie group method for finding group-invariant solutions of 
partial differential equations; they are determined using a new and direct method which 
involves no group theoretical techniques. 

1. Introduction 

In this paper we discuss similarity solutions of the modified Boussinesq (mBq) equation 

(1.1) I 2  qrt - q r q x x  - j q X q x . y  + 4.xx.u = 0. 

The mBq equation is a soliton equation solvable by inverse scattering (Quispel et al 
1982) and there is a ‘Miura type’ transformation relating solutions of (1.1) to solutions 
of the Boussinesq equation (Boussinesq 1871, 1872) 

where a, b, c are constants, which arises in several physical applications and also 
is a soliton equation solvable by inverse scattering (Zakharov 1974, Ablowitz and 
Haberman 1975, Caudrey 1980, 1982, Deift et al 1982). Specifically, if q ( x ,  t )  satisfies 
the mBq equation ( l . l ) ,  then using the Backlund transformation (Hirota and Satsuma 
1977) 

(1.3a) 

(1.3b) 

where d is a constant, it is easily shown that t ’ (x , t )  is a solution of the potential 
Boussinesq equation 

and u ( x ,  t )  = uX(x, t )  is a solution of the Boussinesq equation (1.2) with a = 0, b = 1/2, 
c = 1, which we can assume without loss of generality (see also Quispel et a1 1982 and 
Gromak 1987). 
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The inverse scattering method, in effect, reduces the solution of the non-linear par- 
tial differential equation to that of a linear integral equation, and the partial differential 
equation is then said to be completely integrable. Furthermore, completely integrable 
partial differential equations all seem to possess several remarkable properties including 
elastically interacting soliton solutions, the existence of infinitely many independent 
conservation laws and symmetries, Backlund transformations, Lax representation, the 
Painleve property, etc; however, the precise relationship betwen these properties has 
yet to be rigorously established (cf Ablowitz and Segur (1981) and Calogero and 
Degasperis (1982); see Hirota and Satsuma (1977), Quispel et a1 (1982), Clarkson 
(1986) and Gromak (1987) for the derivation of some of these properties for the mBq 
equation). 

The classical method of finding similarity solutions of a given partial differential 
equation is to use the Lie group method of infinitesimal transformations (sometimes 
called the method of group-invariant solutions), originally due to Lie (1891) (for recent 
descriptions of this method see Bluman and Cole (1974), Olver (1986), Ovsiannikov, 
(1982), Winternitz (1983)). Although the method is entirely algorithmic, it often involves 
a large amount of tedious algebra and auxilliary calculations which can become 
virtually unmanageable if attempted manually, and so recently symbolic manipulation 
programs have been developed, both in MACSYMA (Rosenau and Schwarzmeier 1979, 
Champagne and Winternitz 1985) and in REDUCE (Schwarz 1985), in order to facilitate 
the determination of the associated similarity solutions. (See Schwarz (1988) for a 
review of the use of computer algebra to find symmetries of differential equations.) 

Bluman and Cole (1969) proposed a generalisation of Lie’s method which they 
called the ‘non-classical method of group-invariant solutions’, which itself has recently 
been generalised by Olver and Rosenau (1986, 1987). All these three methods determine 
Lie point symmetries of a given partial differential equation since the infinitesimals 
depend only on the independent and dependent variables. 

One common characteristic of all these methods for finding symmetries and asso- 
ciated similarity solutions of a given partial differential equation is the use of group 
theory. 

In this paper we use a direct method of deriving similarity solutions of partial 
differential equations which has recently been developed by Clarkson and Kruskal 
(1989). The unusual characteristic about this method in comparison with the others 
mentioned above is that it involves no use of group theory. This method has been 
successfully applied to obtain new similarity solutions of the Boussinesq equation (1.2) 
(Clarkson and Kruskal 1989) and in this paper we use it to derive new similarity 
solutions of the mBq equation (1.1). Essentially the basic idea is to seek a solution of 
a given partial differential equation in the form 

(1.5) 
which is the most general form for a similarity solution. Then we require that 
substitution of (1.5) into the partial differential equation yield an ordinary differential 
equation for w(z) .  This imposes conditions upon Q and its derivatives which enable 
one to solve for Q. It turns out that it is sufficient for the mBq equation (1.1) to seek 
similarity solutions in the special form 

q(x ,  t )  = Q(x,  t ,  w(z(x ,  t ) ) )  

4(x ,  t )  = 0, t )  + B(x ,  t )w(z(x,  t ) ) .  (1.6) 
The outline of this paper is as follows: in 5 2 we describe the classical similarity 

solutions of the mBq equation; in 5 3 we derive new similarity solutions; and in 9 4 we 
discuss the results. 
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2. Classical similarity solutions 

Firstly we shall derive the classical similarity solutions of the mBq equation (1.1) using 
the Lie group method as given by Bluman and Cole (1974). Consider the one-parameter 
( E )  Lie group of infinitesimal transformations in (x, t, q) given by 

5 = x + EX(X, t, q )  + 0 ( E 2 )  

'5 = t + ET(X, t, q )  + O(E2) 

(2. l a )  

(2.lb) 

95 = qx + EQ" + O(E') 

vr = 41 + EQ' + O ( E ~ )  

955 = qxx + EQ"' + O(E') 

'ism = qxxXx + EQ"""" + O(E*) 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

where the functions Q", Q', Q"", Q", Q"""" are determined from equations (2.1) (cf 
Bluman and Cole 1974). The mBq equation (1.1) is invariant under this transformation 
if ~ ( 5 ,  T )  satisfies the same equation as q ( x ,  t). Substituting (2.1) and (2.2) into the mBq 
equation for q ( { , r ) ,  then to first order in E we have 

Q" - Qfqxx - qlQXX - qxQXqxx - iq iQXX + Q"""" = 0. (2.3) 

The infinitesimals X(x ,  t, q),  T(x, t, q) ,  Q(x, t, q )  are determined by collecting coefficients 
of like derivative terms in q and equating them to zero in equations (2.3), and the 
following infinitesimals are obtained: 

(cf Schwarz 1988), where a, p, y, 6 are arbitrary constants. Similarity solutions are 
obtained by solving the characteristic equations 

For the mBq equation (l . l) ,  there are two cases to consider. 
(i) U = 0. Integrating equations (2.5) yields the travelling wave solution 

where f ( z )  satisfies 

(2.7) 

with := d/dz and A an arbitrary constant of integration. If y # 0, then f ( z )  is solvable 
in terms of elliptic functions, whilst if y = 0, then (2.7) is a simple linear equation, 
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(ii) u # 0. Integrating equations (2.5) yields the scaling solution 

6 x + PI. 
( t  + y/2u) 

q ( x , t )  = 2c( In ( t  + $) + J 2  g ( z l ) d z l  z = 

where g ( z )  satisfies 

1 2 ,  z 6 , z 2 ,  32 6 
2 2u 4 4 201 g - - g g  + p g  - - g  +-g  + - g - - = o .  

If we make the transformation 

then Y ( X )  satisfies the fourth Painleve equation (cf Ince 1956) 

B 2 
d X Z  d 2 Y  =’(“‘) 2Y E + ; Y 3 + 4 X Y * + 2 ( X * - A ) Y + -  Y (2.10) 

where A = -46/9& and B is a constant of integration (cf Quispel et al 1982, Gromak 
1987). 

However, the mBq equation ( 1 . 1 )  also possesses similarity solutions which are nor 
obtained using the classical Lie group method. For example, as shown by Quispel et a! 
(1982), the mBq equation ( 1 . 1 )  also possesses the similarity solution 

(2.1 1 )  q ( x , r ) = x ( i + p t ) + ~ i h ( z l ) d z l  z = x - j . t - f p t  2 

where I . ,p  are constants and h ( z )  satisfies 

h” - ah3 - (pz - t j,2)h = a (2.12) 

where a is a constant of integration (though Quispel et a1 (1982) did not point out 
that this similarity solution is not obtainable using the classical Lie group method). 
Equation (2.12) is equivalent (through translation and scaling of the variables) to the 
second Painleve equation (cf Ince 1956) 

d2 Y 
dX 
- = 2 Y 3 + X Y + A  (2.13) 

where A is an arbitrary constant, unless p = 0, in which case it  is solvable in terms of 
elliptic functions. The infinitesimals which give rise to the similarity solution (2.1 1) are 

X ( x ,  t, q )  = I. + pt (2.14) 

which are clearly not a special case of the infinitesimals obtained using the classical 
Lie group method (2.4), unless p = 0. Since this describes a Lie point transformation 
of the mBq equation, then it is probably obtainable using the ‘non-classical method’ 
due to Bluman and Cole (1969). The non-classical method involves more algebra and 
auxiliary calculations than the classical Lie method; in fact, as suggested by Olver 
and Rosenau (1987), the determining equations for these ‘non-classical’ symmeteries 

T ( x ,  t ,  q )  = 1 Q(x, t ,  q )  = ( I .  + pt)’ + px 
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for some partial differential equations might be too difficult to solve explicitly. The 
principal reason for this is that the determining equations for X, T ,  Q are a linear 
system of equations in the classical case whereas they are a non-linear system in the 
non-classical case. Furthermore, for some equations such as the linear heat equation, 
it is well known that the non-classical method does not yield any more similarity 
reductions than the classical method does (Bluman and Cole 1969, see also Ames 1972, 
Hill 1982).  

3. New similarity solutions 

In this section we seek solutions of the mBq equation (1.1) in the form 

where a(x ,  r ) ,  P(x, t )  and z ( x ,  t )  are assumed to be sufficiently differentiable functions 
and w ( z )  is four-times differentiable. (We shall show below why it is sufficient to seek 
a similarity solution of the mBq equation (1.1) in the form (3.1) rather than the more 
general form q(x ,  t )  = Q(x, t ,  W ( Z ( X ,  t ) ) ) . )  

Substituting (3.1) into (1.1) and collecting coefficients of like derivatives and powers 
of w ( z )  yields 

where ‘ := d/dz. In order that this equation is an ordinary differential equation for 
w ( z )  then the ratios of different derivatives and powers of w ( z )  have to be functions 
of z only. This gives an overdetermined system of equations for a(x , t ) ,  P(x,t ) ,  z ( x , t ) ,  
whose solutions yield the desired similarity solutions. Before doing this we make some 
remarks about this direct method. 

Remark 3.1. We shall use the coefficient of w”” (i.e. pz,“) as the normalising coefficient 
and require that the other coefficients are of the form p z : r ( z ) ,  where r is a function 
of z to be determined. 

Remark 3.2.  Whenever we use an upper case Greek letter to denote a function (e.g. 
T(z)), then this is a function to be determined upon which we can perform any 
mathematical function (e.g. differentiation, integration, take logarithm, exponentiate, 
take power, rescale, etc) and then also call the resulting function T(z) without loss of 
generality (e.g. the differential of T(z) will be called T ( z ) ) .  
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Remark 3.3. There are three freedoms in the determination of a, 8, z which we can 
exploit, without loss of generality: 

( a )  if x(x, t )  is of the form a = ~ ( x ,  t )  + p(x, t ) r ( z ) ,  where a0 is specified and 
T ( z )  is any function, then we can assume that r 0 (make the transformation 
w ( z )  --t w(z) - Uz)); 

(b) if p(x, t )  is of the form p = po(x, t)T(z), where PO is specified and T ( z )  is any 
function, then we can assume that r ZE 1 (make the transformation w ( z )  + w ( z ) / T ( z ) ) ;  

(c) if z ( x , t )  is defined by an equation of the form T ( z )  = zo(x,t), where zo is 
specified and T ( z )  is any invertible function, then we can also assume that r = z (make 
the transformation z + T - ’ ( z ) ,  where T-’ is the inverse of r). 

We shall now proceed to determine the general similarity solutions of the mBq 
equation using this method. 

The coefficient of (w’)”’’ yields the constraint 

p z ; r ( z )  = p3z,“ 

where T ( z )  is a function to be determined. Hence, using the freedom mentioned in 
remark 3.3(b) above, 

p = 1. (3.3) 

The coefficient of w”’ yields the constraint 

/ I z ;T (z )  = 4p,z; + 6pz;z,, 

where T(z) is to be determined. Hence using (3.3) and rescaling r, we have 

which upon integration gives 

z , r ( z )  = o(t) (3.4) 

where @(t) is a function of integration (recall remark 3.2). Integrating (3.4) gives 

where X ( t )  is another function of integration. Using the freedom mentioned in remark 
3.3(c), we have 

where O ( t )  and a(t) are to be determined. 
The coefficient of w’w” yields the constraint 

p z ; r ( z )  = p2z;(z ,  + c(,z,) 

where T(z) is to be determined, and using equations (3.3) and (3.5), this simplifies to 



New similarity solutions for the mBq equation 2361 

Integrating this and using the freedom mentioned in remark 3.3(a), we have 

where +(t) is to be determined. 

equation (3.2) simplifies to 
If a, and z are as given in equations (3.6), (3.3) and (3.9, respectively, then 

This is an ordinary differential equation for w(z) provided that 

3 dB 
dt 

4 d28 d20 
dt2 dt2 

e y , ( z )  = - 

e y2(z) = x- + - 

e4y3(z) = x2e- d28 + 2xe- d20 + ( z ) ~  - 2 8 2 2  
dt2 dt2 

(3.8~1) 

(3.8b) 

(3 .8~)  

(3.8d) 

where y l ( z ) ,  y2(z), y3(z), y4(z) are to be determined. Firstly consider equation (3.8a), 
since z = xO(t) + o(t),  then necessarily yl(z)  = A, constant, and hence O(t )  satisfies 

Using this, it 

dO/dt = A03. 

is easily shown from equations (3.6) and (3.8) that 

x2AtI2 x do  
2 8 dt 

a(x,t) = -- - - - + I $  

Y ~ ( z )  = 3A2z + B 
Y S ( Z )  = 3A2z2 + 2Bz + C 
y4(z) = -(;A3z2 + 3ABz + i A C )  

where B, C are constants, and a(t) and f$ ( t )  satisfy 

d2a 
- = (3A2a + B)04 dt2 

Therefore the general similarity solution of the mBq equaions (1.1) is given 

q(x, t )  = W ( Z )  - ;AX 2 2  e - - x d a  - + f$ Z(X, t )  = x q t )  + a(t) 8 dt 

(3.9) 

(3.10a) 

(3.10b) 
(3 .10~)  
(3.10d) 

(3.11) 

(3.12) 

by 

(3.13) 
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where e(t) ,  a(t) and 4(t)  satisfy equations (3.9), (3.11) and (3.12), respectively, and 
W(z) := w’(z) satisfies 

W”’-i W2 W’+iAW2+(3A2z+B) W+$(3A2z2+2Bz+C) W’-(iA’z2 + 3ABz + SAC) 
= 0. (3.14) 

There are two cases to consider. 

(i) A = 0. In this case, the solutions of equations (3.9), (3.1 1) and (3.12) are 

( 3 . 1 5 ~ )  
(3.15b) 
(3 .15~)  

where 1.0, 1.1, ,i2 are arbitrary constants and the associated similarity solution of the 
mBq equation is 

q(x, t )  = w(z) - x(Bt + 21) + i(1.: - 2B20 - C ) t  + A2 

z = x + f ~ t ’  + A i r  + io 

( 3 . 1 6 ~ )  

(3.16b) 

where W(z) := w’(z) satisfies 

W” - W + ( BZ + f C) W = D (3.17) 

where D is a constant of integration. Dependent on whether B = 0 or not, the solution 
of this equation is expressible either in terms of elliptic functions or the second Painleve 
equation (cf Ince 1956) 

d 2 Y / d X 2 = 2 Y 3 + X Y + A  

where A is a constant. Without loss of generality, we can set 1.0 = 0 and 1.2 = 0 in 
equations (3.15) and then this similarity solution reduces to one given by Quispel et al 
(1982), which we discussed in 0 2 above. 

(ii) A # 0. In this case, we set A = -1/2 and B = 0 without loss of generality, therefore 
solving equations (3.9) and (3.1 1) yields 

(3 .18~)  
(3.18b) 

where CO, 2.1, i 2  are arbitrary constants (without loss of generality assume that to = 0 
and 1.2 = 0). Hence solving equation (3.12), we obtain the similarity solution 

X2 3A1Xt 1{t3 c + - - - lnt  
4 2  

q ( x , t )  = w(z) + - - - 
4t 2 ( 3 . 1 9 ~ )  

z = xt-1/2 + ~ . ~ t ~ / *  (3.19b) 

where W(z) := w’(z) satisfies 

W“’- LW2W’- W2 + ~ z W  + ( 2 z 2  + i C ) W ‘ +  % Z *  + aC = 0. (3.20) 2 4 4 8 2 16 
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Now make the transformation 

W(Z) = -3”‘Y(X) - z X = 31/4z/2 (3.21) 

then Y (X) satisfies the fourth Painlevi equation (cf Ince 1956) 

1 2 3  B 
= - (5) +-Y3+4XY2+2(X2-’4)Y + -  

dX2 2Y dX 2 Y 
(3.22) 

where A = -4C/9& and B is a constant of integration (cf Quispel et a1 1982 and 
Gromak 1987). 

The similarity solution (3.19) represents a new reduction of the mBq equation to 
the fourth Painleve equation. The infinitesimals associated with this similarity solution 
are 

x(x , t ,q )  =x-3j . , t2  
T ( x ,  t ,  q)  = 2t 
Q(x, t ,  4) = 6ii t3  - 6 2 , ~ ~  - C 

( 3 . 2 3 ~ )  
(3.23b) 
(3 .23~)  

which (like the infinitesimals for the similarity solutions obtained in (i) above, equation 
(2.14)) are clearly not a special case of the infinitesimals obtained using the classical 
Lie group method (2.4), unless j.1 = 0. 

Finally in this section, we shall show why it is sufficient to seek a similarity solution 
of the mBq equation (1.1) in the special form (3.1) rather than the more general form 

Suppose we seek a similarity solution in the form (3.24), then substituting (3.24) into 
(1.1) yields 

[Qft  + 2Qfww’zf + Q,,(W’)’Z: + Qw(w”zr + w’zff)] 

- { (Qt + Q ~ w ’ z ~ )  + [Qi + 2QxQw~’zx + Q ~ ( W ’ ) ~ Z . ~ ]  } 
x [Qx.y + 2Q.yww’z, + Qww(w’)*z.: + Q,(w”z, + w’z,,)] 

+ Qx,,, + 4Qxxxurw’zx + 6Qxxww(w z, + 4QxwwN,(w ) z ,  + Q,,3b,ww(~’)4~:  
+ 6Qx.yw(~1~.yx  + w’’z,;) + 12Q,,, [w’w’’~; + (w’)~z,z,,] 

+ 6Q,,, [(w 1 w z ,  + (w’)~z~z, , ]  + ~ Q , , ( W ~ ” Z . ~  + 3w’’zXz,, + w’z,,,) 

+ Qw [w””z: + 6w z,,,, + w”(~z,z,,, + 3z:,) + w’z,,,,] 

’ 2  2 ’ 3  3 

’ 2  I t 4  

+ Qn.w{ [~w’w’’’ + ~ ( W ” ) ~ ] Z ~  + l8w’w’’z~~zXx + (w’)~(~z,z,,, + 32,)) 2 

’I’ 2 ~ 

= o  

where ’ := d/dz. In order that this is an ordinary differential equation in w(z), then 
the ratios of different derivatives of w(z) have to be functions of w and z. If we use 
the coefficient of w”” (i.e. Qwz.:) as the normalising coefficient, then the coefficients of 
w’w”’ and (w”)* require that 

Qwz:Uw,z) = Qwwz; 
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where T(w,z) is a function to be determined. Hence 

which after integrating twice yields 

where O(x, t ) ,  @(x, t )  are arbitrary functions. Therefore it is sufficient to seek similarity 
solutions of the mBq equation ( 1 . 1 )  in the form (3.1). 

4. Discussion 

Firstly we make the following general remarks about similarity solutions of partial 
differential equations. 

Remark 4 .1 .  Generally, given a partial differential equation with a symmetry (i.e. a 
transformation of the dependent and/or independent variables that leaves the equation 
invariant), the action of the symmetry group takes a solution of the equation into 
another solution of the equation. Starting with a fixed solution that corresponds to 
the identity element of the group, every element of the group corresponds to some 
solution of the equation. The starting solution can be any solution of the equation. 
This mapping can be used to dejine a symmetry, and the group carries the set of all 
solutions of the partial differential equation into itself. 

Remark 4.2.  Given such a symmetry of a partial differential equation, one can seek 
solutions which are mapped into themselves under the action of the group. These are 
similarity solutions corresponding to the group. For a partial differential equation with 
two independent and one dependent variables, these solutions typically are solutions 
of an ordinary differential equation. 

Remark 4.3.  Alternatively, the ordinary differential equation can be taken as a means of 
generating special solutions of the partial differential equation, without regard to what 
maps into what. Then the ordinary differential equation appears to be an example of 
the side condition introduced by Olver and Rosenau (1986, 1987). This seems to be the 
way similarity solutions are generally used. 

Remark 4.4.  The special (or similarity) solutions obtained in this paper are also 
defined through an ordinary differential equation that is ‘compatible’ with the partial 
differential equation (in the sense that they have common solutions). Again, the 
ordinary differential equation is a side condition on the partial differential equation, 
and the surprise is that there are common solutions. The issue of mapping solutions 
of the partial differential equation does not arise in the procedure and so there is no 
connection with remarks 4.1 and 4.2 above (in fact, as shown below, the additional 
special/similarity solutions do not map solutions of the partial differential equation 
into solutions of the same partial differential equation). The method appears to be any 
effective way of producing special/similarity solutions. 

Remark 4.5.  The special/similarity solutions obtained in this paper are associated 
with Lie point transformations and it remains an open question as to whether these 
new special/similarity solutions and their associated symmetries can be obtained using 
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any of the other generalisations of the classical Lie method; such as the ‘non-classical’ 
method due to Bluman and Cole (1969) (or its generalisation due to Olver and Rosenau 
1987), and the method developed recently by Bluman er a1 (1988). However, even if 
these special/similarity solutions are theoretically obtainable by any of these methods 
(and it is not immediately obvious that this is necessarily the case), then it seems 
that this direct method of finding special/similarity solutions is somewhat simpler to 
implement; in fact, it appears to be simpler even than the classical Lie point method 
(without the assistance of a symbolic manipulation program). 

It is easily shown that any similarity solution of the mBq equation obtained in 
this paper which is not obtained by the classical Lie group method does not have the 
property that the associated group maps solutions of the mBq equation into itself. 

Firstly, consider the similarity solution 

(4.1) A I  q(x, t )  = w(z )  + x(i1 +PIC) 2 = x - / . I t  - 5p1t2. 

The associated one-parameter ( E )  group is given by 

x -+ x + (;.I + p l t ) e  + i p l e 2  ( 4 . 2 ~ )  
t - + t + €  (4.2b) 
q -+ q + [xpl + (j.1 + M ~ ) * I E  + spl(j.1 + plt)e2 + i p :e3 .  (4 .2~)  

This group maps solutions of the mBq equation (1.1) into solutions of 

1 2  qrr - q r q x x  - jqxq.xX + qxxxx + 2p1e[qx, + (2.1 + ptt)qxx - pi1 = 0. ( 4 . 3 ~ )  

Note that if q(x,t) is as defined in (4.1) (i.e. it is the similarity solution), then 

qxt + 0.1 + plt )qxx - P I  = 0. (4.3b) 

= 0, then the group (4.2) does not map solutions of the mBq Therefore, unless 
equation into itself, though it does give similarity solutions. 

An analogous result holds for the similarity solution 

q ( x ,  t )  = u ( z )  - 2i.2xt - p2 In t z = x t ~ ’ ’ ~  + ~ . ~ t ~ / ~  (4.4) 

(this is equivalent to (3.19)). The associated one-parameter ti) group is given by 

(4.52) 
(4.5b) 
(4.5c) 

This group maps solutions of the mBq equation (1.1) into solutions of 

qrr - 4 t h  - j q x q x x  + qxxxx = j .2U - e-3’)[4tqxt + 2qx + (2x - 6i2t2)qxx + 12i2tI. (4.6) 

Additionally, if q ( x , t )  is as defined in equation (4.4) (i.e. it is the similarity solution), 
then 

1 2  
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Hence, unless ,i2 = 0, then the group (4.5) does not map solutions of the mBq equation 
into itself, though it does give similarity solutions. 

For both these similarity solutions, the associated group maps solutions of the mBq 
equation (1.1) into solutions of a ‘perturbed mBq equation’, in which the associated 
similarity solution identically satisfies the perturbed part of the equation. This poses 
the question: what type of symmetries of the mBq equation (1.1) are those which we 
have obtained (and are not found using the classical Lie method)? 

This direct method of determining similarity solutions of given partial differential 
equations poses another open question: what is the relationship (if any) between the 
direct method used in this paper and the other generalisations of the classical Lie 
method, such as those due to Bluman and Cole (1969), Olver and Rosenau (1986, 
1987) and Bluman et a1 (1988)? In their generalisation of the non-classical method 
of Bluman and Cole (1969), Olver and Rosenau (1986, 1987) showed that in order 
to determine a group-invariant solution of a given partial differential equation, one 
could use any group of infinitesimal transformations whatsoever. Generally, given 
any group of infinitesimal transformations and any partial differential equation, there 
will be no solutions of the partial differential equation which are invariant under the 
group and so the question becomes how does one determine a priori whether a given 
group will give a meaningful similarity reduction? One possibility is that by seeking 
a solution of a given partial differential equation in a certain form (as we have done 
in this paper), one is naturally led to the appropriate group (i.e. the requirement 
that the similiarity reduction reduces the partial differential equation to an ordinary 
differential equation is equivalent to the side condition in the terminology of Olver 
and Rosenau (1986, 1987)). The results obtained both here and in an earlier paper 
(Clarkson and Kruskal 1989) support the conclusions drawn by Olver and Rosenau 
(1986) that ‘the unifying theme behind finding special solutions of partial differential 
equations is not, as is commonly suppposed, group theory, but rather the more 
analytic subject of overdetermined systems of partial differential equations’. However, 
group theory clearly remains important in the determination of explicit, physically 
significant, special solutions of partial differential equations (as demonstrated by Olver 
and Rosenau (1987)). 

It appears that the mathematically and physically relevant determination of spe- 
cial/similarity solutions of partial differential equations will continue to attract consid- 
erable research interest. 

Acknowledgments 

I would like to thank Martin Kruskal, Peter Olver, Harvey Segur and Pave1 Winternitz 
for helpful discussions. 

References 

Ablowitz M J and Haberman R 1975 J .  Math.  Phys. 16 2301-5 
Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia, PA: SIAM) 
Ames W F 1972 Nonlinear Partial Diferential Equations in Engineering vol I 1  (New York: Academic) 
Bluman G W and Cole J D 1969 J .  Math. Mech. 18 1025-42 
-1974 Similarity Methods f o r  Diferential Equations (Applied Mathematical Science Series 13) (Berlin : 

Springer) 



New similarity solutions for  the mBq equation 2367 

Bluman G W, Kumei S and Reid G J 1988 J .  Math. Phys. 29 8 6 1 1  
Boussinesq J 1871 Comptes Rendus 72 755-9 
-1872 J .  Math. Pures Appl. 7 55-108 
Calogero F and Degasperis A 1982 Spectral Transforms and Solitons. I (Amsterdam: North-Holland) 
Caudrey P J 1980 Phys. Lett. 79A 264-8 
-1982 Physica 6D 51-66 
Champagne B and Winternitz P 1985 Preprint Montreal CRM-1278 
Clarkson P A 1986 Physica 19D 47-50 
Clarkson P A and Kruskal M D 1989 J .  Math. Phys. submitted 
Deift P, Tomei C and Trubowitz E 1982 Commun. Pure Appl. Math. 35 567-628 
Gromak V I 1987 Difl: Eqn. 23 5 6 1 3  
Hill J M 1982 Solution of Ordinary Differential Equations by means of  One-Parameter Groups (Research Notes 

Hirota R and Satsuma J 1977 f rog .  Theor. Phys. 57 797-807 
Ince E L 1956 Ordinary D(ferential Equations (New York: Dover) 
Lie S 189 1 Vorlesungen iiber Differentialgleichungen mit Bekannten InJrnitesimalen Transformationen (Leipzig: 

Olver P J 1986 Applications of  Lie Groups ro Diflerential Equations (Graduate Texts in Mathematics 107) 

Olver P J and Rosenau P 1986 Phys. Lett. 114A 107-12 
-1987 SIAM J .  Appl. Math. 47 263-78 
Ovsiannikov L V 1982 Group Analysis of  Differential Equations (New York: Academic) 
Quispel G R W. Nijhoff F W and Cape1 H W 1982 Phys. Lett. 91A 143-5 
Rosenau P and Schwarzmeier J L  1979 Courant Institute Report COO-3077-160, MF-94 
-1986 Phys. Lett. 115A 75-7 
Schwarz F 1985 Computing 34 91-106 
-1988 SIAM Rec. 30 45C-81 
Winternitz P 1983 Nonlinear Phenomena (Lecture Notes in Physics 189) ed K B Wolf (Berlin: Springer) pp 

Zakharov V E 1974 Soc. P h p - J E T P  38 108--10 

in Mathematics 63) (London: Pitman) 

Teunber) (Reprinted 1967 New York: Chelsea) 

(Berlin: Springer) 

263-331 


